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Drivers of arthropod biodiversity 
in an urban ecosystem
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Our world is becoming increasingly urbanized with a growing human population concentrated around 
cities. The expansion of urban areas has important consequences for biodiversity, yet the abiotic 
drivers of biodiversity in urban ecosystems have not been well characterized for the most diverse 
group of animals on the planet, arthropods. Given their great diversity, comparatively small home 
ranges, and ability to disperse, arthropods make an excellent model for studying which factors can 
most accurately predict urban biodiversity. We assessed the effects of (i) topography (distance to 
natural areas and to ocean) (ii) abiotic factors (mean annual temperature and diurnal range), and 
(iii) anthropogenic drivers (land value and amount of impervious surface) on the occurrence of six 
arthropod groups represented in Malaise trap collections run by the BioSCAN project across the 
Greater Los Angeles Area. We found striking heterogeneity in responses to all factors both within 
and between taxonomic groups. Diurnal temperature range had a consistently negative effect on 
occupancy but this effect was only significant in Phoridae. Anthropogenic drivers had mixed though 
mostly insignificant effects, as some groups and species were most diverse in highly urbanized areas, 
while other groups showed suppressed diversity. Only Phoridae was significantly affected by land 
value, where most species were more likely to occur in areas with lower land value. Los Angeles can 
support high regional arthropod diversity, but spatial community composition is highly dependent on 
the taxonomic group.

Urban ecosystems, including the developed infrastructure of towns and cities, are among the most widespread 
forms of land use  globally1. Cities are novel, highly manicured ecosystems composed of developed structures 
intermixed with vegetation and impervious surfaces where human populations are the main drivers of  change2,3. 
Thus, the traditional view of urban ecosystems is that they are generally devoid of biodiversity, especially when 
compared with natural areas. Nevertheless, a surge of research over the past few decades has highlighted the 
critical role of cities in harboring distinct flora and fauna—especially for vertebrates such as birds and mammals, 
which have been the predominant focus of urban wildlife  study4–8. Invertebrates, including arthropods, which 
are the most diverse group of animals on the planet, have been comparably less  studied9. For example, despite 
recent efforts in describing new insect species within urban ecosystems, the number of insects in urban environ-
ments, the extent of their ranges, and other aspects of their life history are generally  unknown10. One exception 
to this is urban pollinator research, which has rapidly grown in scope and volume in recent years. This research 
has shown that urban areas can act as  refuges11 for pollinators when there is adequate suitable  habitat12, but that 
these habitats disproportionately favor generalist  species13. Given the ecological importance of arthropods in 
virtually all terrestrial ecosystems, and considering the widespread declines in arthropods across the globe, it is 
imperative to expand the taxonomic scope of urban ecology research to describe the distribution and ecology 
within cities in lesser-studied arthropod groups.
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Characterizing the drivers of arthropod distributions in cities is essential because of their critical role in 
urban ecosystems. They are integral components of food webs that provide a broad range of ecosystem services 
in  cities14. When food webs in cities become simplified, the functional roles of the key players are  amplified15. 
Considering that arthropods fill many trophic roles, maintaining arthropod biodiversity is imperative for many 
other organisms. For example, they are a critically important food source for urban bird species. Cities can serve 
as reservoirs of pollinator diversity, and green areas within them can serve as climatic “stepping stones” to connect 
habitats across the  landscape16–18. Additionally, arthropods are important for decomposition processes, nutrient 
cycling, and biological control of  pests19. They also provide a window into other taxa that receive even less atten-
tion in urban ecology, such as saprotrophic  organisms20 and cryptic soil  biota21. While there are many immediate 
steps that we can take to protect and foster urban arthropod  biodiversity22, more effective policies and practices 
require a more nuanced understanding of the characteristics of urban environments that support a diverse and 
resilient arthropod  fauna23, as well as the taxonomic groups most susceptible to increasing  urbanization24.

Arthropod distributions in urban environments can be driven by a wide variety of factors, including climate-
related variables, as well as income and human-related variables. Disentangling the effects of each of these 
becomes challenging, particularly in urban areas where micro-climates and micro-habitats depend on both 
large-scale climate patterns, as well as anthropogenic structures. For example, the amount of water available for 
arthropods depends both on the amount of precipitation, as well as the irrigation patterns in a given area. Using 
only observational data, ecologists have often relied on techniques like model selection in hopes of extracting 
cause-and-effect relationships. However, these techniques can lead to inaccurate or even biased  results25,26. For 
example, the inclusion of a third variable (Z) in a model can unintentionally remove the causal effect between 
X and Y if there is a causal link between X and Z that is unaccounted  for27. Causal inference approaches have 
emerged as a powerful tool to overcome this hurdle as they are concerned with predicting the consequences of 
intervening in a system (e.g., how X impacts Y) by considering the effect additional variables (e.g. Z) could have 
on causal relationships between X and  Y28. Essentially, the framework involves (i) identifying variables that are 
likely important in the system; (ii) making causal assumptions about their relationships between variables, (iii) 
identifying which effects to estimate; and (iv) exploring the consequences of changing the assumptions to see 
whether inferences hold under different sets of  assumptions25.

The greater Los Angeles metropolitan area (L.A.) is one of the largest urbanized areas in the United States. 
Due to the development patterns, in many places throughout the city, it is a short distance between the surround-
ing mountainous natural areas and high-density urban areas (e.g. Santa Monica Mountains to downtown and 
Century City), which creates a narrow urban-to-natural gradient. Along this gradient, numerous factors shift, 
including elevation, mean and diurnal temperature, and income distribution (via the luxury hypothesis described 
below), that likely affect arthropod species distributions. Although these narrow gradients may suppress diversity 
in many taxonomic groups, they could alternatively create high regional diversity (along with high beta diversity) 
and abundance levels in arthropods due to their relatively small home range sizes, high sensitivity to climatic 
drivers, and the variety of micro-habitats found in urbanized landscapes. For example, temperature has been 
shown to explain spatial insect beta diversity  gradients29. Furthermore, urban structures can either  increase30 
or  decrease24 insect richness, depending on the interplay between densification vs. sprawl as well as the specific 
life history requirements of the  group31,32.

Beyond climatic drivers, local-scale influences like urban green areas can dramatically affect arthropod 
 occurrence33. However, L.A. has a long and fraught history of real estate inequity, which has left a legacy on land 
value across the  city34 where high-income neighborhoods have disproportionately higher levels of vegetation 
cover and green area than lower-income  neighborhoods35. This phenomenon is known as the “luxury effect” 
and hypothesizes a positive relationship between wealth and biodiversity within urban areas and has been dem-
onstrated in groups such as  birds36,  bats37, and terrestrial  mammals38. However, although it may directly impact 
the amount of habitat and thus the likelihood of occurrence of many arthropod species, very little research to 
date has examined the luxury effect on arthropod  biodiversity39.

In this study, we characterize arthropod diversity within 6 different groups across an extensive metropolitan 
area that spans climatic and urban gradients. Specifically, we sought to disentangle the relative importance of (i) 
topography (distance to natural areas and distance to ocean) (ii) abiotic factors (mean annual temperature and 
diurnal range, and relative humidity), and (iii) anthropogenic drivers (land value and amount of impervious 
surface as proxies for luxury effect) in determining the distributions of individual species as well as comparing 
responses within and among several major taxonomic groups. We accomplished this with the development of 
a large-scale and extensive monitoring network across L.A., which sampled arthropods from 2014 to 2018 in 
various phases, and the application of multi-species occupancy modeling and causal inference tools.

Results
Overall, we found that arthropod diversity patterns varied dramatically across space in L.A. and diverged sig-
nificantly across the 6 taxonomic groups we examined. Much of this diversity and divergence between groups 
can be attributed to the geographical variation in topology, environment, and anthropogenic features across this 
relatively large area and each group’s and species’ individual response to those predictors. This is apparent from 
the extensive between- and within-group variation that we observed in both the direction and magnitude of 
predictor importance on arthropod occupancy. Our predictors were all transformed to the same scale in order 
to enable meaningful comparisons between groups and drivers. Additionally, models were constructed such 
that they estimate the marginal contribution of each predictor; i.e. predictors are directly attributable and not 
confounded with other predictors (see “Methods” section).

The 60 sites included in this study were widely distributed across L.A.: as far west as the coastline, eastwards to 
San Bernardino in the San Gabriel Valley, northwards to the San Fernando Valley, and southwards to Long Beach 
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(Fig. 1). The furthest sites were 122 km apart from one another. A large proportion of sites were concentrated in 
central L.A. In total, 236 species of arthropods were included in our study.

When comparing predictors of occurrence across taxonomic groups, topographical elements consistently 
had the strongest effects on arthropod occurrence (Fig. 2a,b). Although the mean effect of distance to ocean was 
centered on 0 and was not statistically significant for all groups, it had the largest within-group variation. Phori-
dae in particular had a wide variation in responses, with a mean positive effect that overlapped with 0 (0.091, 
95% CI [− 0.033, 0.209]) (i.e. many species were more likely to occur farther from the ocean, but this was not 
universal amongst phorid species). Similarly, distance to natural area had large within- and across-group vari-
ation, although this effect was only statistically significant in Drosophilidae (mean estimate of − 0.175, 95% CI 
[− 0.356, − 0.037]), which were more likely to occur in close proximity to natural areas. Syrphidae occupancy also 
increased near natural areas, but this was not a statistically significant effect (mean estimate of − 0.127, 95% CI 
[− 0.311, 0.042]). Meanwhile, there was no significant mean effect on Tipuloidea, Araneae, and Mycetophilidae 
(Fig. 2a,b), and interestingly, we found a positive (but not significant) effect of distance to natural areas (mean 
estimate of 0.050, 95% CI [− 0.042, 0.130]) on Phoridae occurrence (i.e. some species were more likely to occur 
farther from natural areas).

In terms of environmental predictors, the effect of mean annual temperature on species occurrence was not 
consistent within- or across groups on average, except we found a significant negative relationship in Syrphidae 
and Mycetophilidae (Fig. 2c,d), indicating that all syrphid and mycetophilid species collected in this study are 
more likely to occur in cooler sites. Notably, there was a large within-group variation in Phoridae. Meanwhile, 
mean diurnal temperature range had a consistent and negative effect across all groups, though this effect was 
only statistically significant in Phoridae. Phorid species were less likely to occur in sites that experienced more 
extreme fluctuations in temperatures. These results indicate that in L.A., mean temperature on its own does not 
have a directional effect on species’ distributions, but the diurnal range does.

For anthropogenic predictors of arthropod distributions, there was no mean effect of the amount of impervi-
ous surface surrounding a site on occurrence in some groups (Drosophilidae and Phoridae) but a negative effect 
in other groups (Syrphidae and Tipuloidea) and a positive effect in others (Araneae and Mycetophilidae), though 
none of these effects were statistically significant (Fig. 2e,f). Similarly, land value had little predictive power in 
most groups, though interestingly, most Phoridae species were significantly more likely to occur in areas with 
lower land value (mean estimate of − 0.207, 95 % CI [− 0.334, − 0.083]).

Some of the predictors do not seem to have an overall positive or negative effect on occurrence, but they do 
correspond to changes in community composition. Although Fig. 1a shows that overall arthropod diversity is 
lowest in the most urbanized areas of L.A., when this map is subdivided by taxonomic group (Fig. 1b–g), this is 
not the case for all groups. For example, drosophilid—and to some extent phorid and syrphid diversity—is often 
higher in central L.A. compared to the outskirts.

Figure 1.  Spatial interpolation of diversity across the greater Los Angeles area. (a) Projected richness for all 
combined groups (n = 236 species) is shown using the continuous color map. (b–g) Projected richness is also 
shown for each individual taxonomic group modelled: Phoridae (n = 108 species), Syrphidae (n = 34 species), 
Tipuloidea (n = 20 species), Drosophilidae (n = 27 species), Myceotphilidae (n = 23 species), and Araneae (n = 
24 species). BioSCAN sampling sites are overlaid with shapes displaying the collection phase (year of sampling). 
Across groups, total richness is not obviously driven by any single predictor but rather a result of complex 
group- and species-specific effects. The extent of the spatial map is based on (1) available land value data, 
which is confined to the Los Angeles and San Bernardino Counties and (2) the bounding of every predictor to 
3 standard deviations away from the mean value present at BioSCAN sampling sites. Grid cells are at a 1 km 
resolution. R packages ggplot2, ggmap, and basemaps were used to create this map. Map tiles by Stamen 
Design, under CC BY 4.0. Data by OpenStreetMap, under ODbL.
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Group-level trends are not representative of all species contained within them, and accordingly, we also 
characterized within-group variation in responses. We focus on Phoridae in the main text, as they are the most 
diverse and best-characterized group in this dataset, but similar plots for all other taxonomic groups are located 
in the Supplemental Material (Supp. Figs. S7–S11). In terms of topographical variables, we found that distance 
to natural areas had little effect on occupancy (Fig. 3a), while individual phorid species do respond strongly to 
increasing distance to the ocean. Specifically, two species (Megaselia donahuei and Puliciphora occidentalis) are 
significantly more likely to occur at sites near the ocean, while six species (Diplonevra setigera, Megaselia car-
thayensis, Megaselia losangelensis, Megaselia simunorum, Megaselia spiniclasper, and Trophodeinus furcatus) are 
more likely to occur at sites farther from the ocean (Fig. 3b). In terms of climatic variables, we found that both 
temperature and diurnal range had strong effects on individual species (Fig. 3c,d), but relative humidity did not 

Figure 2.  Across-group predictors of occupancy across environmental variables. (a) Distance to Natural Area. 
(b) Distance to Ocean. (c) Temperature. (d) Diurnal Range. (e) Impervious Surface. (f) Land Value. The six 
colors displayed in the plots represent different arthropod groups: Araneae (dark blue), Drosophilidae (dark 
turquoise), Mycetophilidae (yellow), Phoridae (yellow–orange), Syrphidae (orange), and Tipuloidea (red). 
There are 24, 27, 23, 108, 34, and 20 species in Araneae, Drosophilidae, Mycetophilidae, Phoridae, Syrphidae, 
Tipuloidea, respectively. Each colored point represent a species from an arthropod group with the same color. 
The grey horizontal line at y = 0 represents no significant trend. The black point represents the average trend of 
an arthropod group. The black vertical line represents the 95% confidence interval of the average group trend. 
Stars above each group represent group-level 95% confidence intervals that do not overlap with zero. Note 
that the effects of land value and impervious surface are measured within a 0.25 km radius for Phoridae and 
Araneae, and 0.5 km for Drosophilidae, Syrphidae, Tipuloida and Mycetophilidae. Araneae and Mycetophilidae 
have different y-axis values for some predictors.
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(Supp. Fig. S6). For temperature, we found three species where occupancy increased significantly with increas-
ing temperature (Megaselia donahuei, Puliciphora occidentalis, and Spiniphora bergenstammii), and one species 
where occupancy decreased significantly with increasing temperature (Megaselia rodriguezorum, Fig. 3c). The 
mean effect of diurnal range was negative on Phoridae as a whole, and indeed we found most species to decrease 
in occupancy as the diurnal range increased, though only two of those species did so significantly (Megaselia 
renwickorum and Spiniphora bergenstammii Fig. 3d). Finally, in terms of anthropogenic drivers, we found that 
impervious surface had a very small and statistically insignificant effect on all individual phorid species (Fig. 3e), 
but land value had a consistently negative effect. However, only four species decreased significantly as land value 
increased (Anevrina variabilis, Megaselia hoggorum, Megaselia scalaris, and Phalacrotophora halictorum Fig. 3f). 
Further, the decrease of occupancy with increasing land value was most dramatic at the lowest end of the distri-
bution, indicating that above a certain threshold land value, phorid occurrence was no longer impacted. Some 
of the species listed above show similar responses to seemingly opposing predictors (e.g. Megaselia donahuei 

Figure 3.  Within-group predictors of occupancy in Phoridae. 108 species are represented in this group. Each 
plot is showing the single effect of an environmental variable by keeping the other environmental variables in 
the same model at their average value from the sampling data. (a) Distance to Natural Area. (b) Distance to 
Ocean. (c) Temperature. (d) Diurnal Range. (e) Percentage of Impervious Surface. (f) Land Value. Each line 
represents the effect of the environmental variable on an individual species. Red lines indicate a statistically 
significant negative relationship between the occupancy of a species and an environmental variable, blue lines 
are statistically significant positive relationships, and grey lines indicate non-significant relationships.
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is more likely to occur at sites near the ocean, and also in sites with higher mean temperatures; whereas mean 
temperature and distance to ocean negatively covary in space Fig. S15 and S17). We note that these are effects 
marginal effects, after accounting for possible confounders.  

Discussion
As cities across the world continue to grow at unprecedented rates, determining features of urban ecosystems that 
support or hinder biodiversity is a critical and pressing need. Here, we used a robust arthropod dataset, coupled 
with topographic, abiotic, and anthropogenic predictor variables, to uncover drivers of arthropod diversity 
and occupancy patterns across L.A. Our results highlight the differential responses of arthropods to various 
geographic and biological features of L.A. L.A. is surrounded by the Pacific Ocean—to the west and south—and 
mountains—to the north and east—that are primarily protected lands. Therefore, arthropods may be more 
diverse the closer they are to potential source populations in the protected areas. Abiotic factors were also key 
drivers of arthropod diversity patterns where the mean diurnal temperature range at a given location was a 
stronger predictor than average temperature values. Given that arthropods are ectothermic, species range limits 
may be governed by their physiological tolerances for a range of temperature conditions. Lastly, anthropogenic 
variables, such as land cover, were less strong in their predictive power, which is in contrast to studies of birds 
and other  taxa36,  bats37, and terrestrial  mammals38. Taken together, our study uncovers important relationships 
among predictor and response variables and highlights potential important paths for future research.

One of our most important findings was the large heterogeneity in responses both within taxonomic groups as 
well as across them. For example, land value and amount of impervious surface had opposing trends in Drosophi-
lidae compared to Tipuloidea. Meanwhile, at the individual species level, there is large variation within phorids 
in their probability of occurring in close proximity to the ocean. However, some trends were broadly consistent: 
larger diurnal temperature ranges negatively impacted occurrence in almost all species (Fig. 2d), indicating this 
is a strong limiting factor in L.A.’s arthropod biodiversity.

All of the heterogeneity in species-level responses scales up to create dramatic spatial variation in arthropod 
biodiversity in L.A. (Fig. 1). Although some groups have high levels of diversity in the densely urbanized areas 
of central L.A. (e.g. Drosophilidae), other groups are most diverse in the city’s outskirts. In some groups such 
as spiders, these patterns may be driven by invasive species (a number of which are present in our dataset), who 
tend to do better in low-diversity  systems40. We note that predicted species richness for Tipuloidea and Syrphidae 
maps is consistently low (even though our study includes 34 Syrphidae species and 20 Tipuloidea species). This 
could potentially be driven by low overall occupancy in species within these groups, or the inability to predict 
occupancy from the variables included in our models. For example, floral resources and aphids are likely very 
important in determining Syrphidae  occurrences41, and these variables are not included in our model.

An interesting and somewhat unexpected finding from our analysis was the negative trend we observed for 
land value in predicting occupancy patterns in Phoridae and Tipuloidea. The luxury effect, a well-known and 
studied phenomenon of many cities across the globe, suggests that wealthier areas will harbor greater biodiversity 
as residents of these areas have the means to support lush yards and other green amenities, plus landscaping, 
maintenance, and irrigation that in turn supports a high diversity of wildlife. Further, wealthy areas in arid cit-
ies, such as L.A., have far greater tree canopy cover and vegetation  cover42, potentially creating habitats that may 
attract arthropods and act as a refuges in an otherwise inhospitable  environment43. Thus, given that arthropods 
have particular habitat associations with various features of urban  environments23, we expected to find posi-
tive patterns of arthropods occupancy in relation to wealth patterns. Our expectations follow those of  plants35, 
 birds42, and  mammals38, which were all more abundant and diverse in high-income areas of cities. This raises 
the question of what could be driving the contrasting patterns we uncovered for arthropods (and particularly 
Phoridae) when compared to other taxa. A plausible explanation could be the likely increase in landscaping 
in high-income  areas44, which may lead to overly manicured yards with high grass cover and high mowing 
intensity, each of which is negatively related to arthropod abundance and diversity. This may be particularly 
important in phorid flies,  where some species consume and require decaying matter in order to complete their 
life  cycle10. For example, one of the phorid species that decreased significantly in occupancy with increasing land 
value was Anevrina variabilis, a species that inhabits ground squirrel burrows and feeds on decaying squirrel 
carcasses. Over-watering can also negatively affect habitat for phorid flies. For example, another phorid species 
negatively associated with land value is Phalacrotophora halictorum, a parasitoid of halictid bees, a group that is 
known to inhabit the driest areas with little or no irrigation. Further, phorid flies have been shown to be sensitive 
to the invasion of Argentine ants (Linepithema humile)46, as Argentine ants kill off the native ants that parasitic 
phorid species use as hosts.  Argentine ants have been shown to be sensitive to desiccation, and require more 
water  availability47, whereas optimal conditions for many phorids are fairly dry natural areas with lots of leaf lit-
ter. Alternatively, lower-income areas may have more ‘feral’ landscaping conditions, which could lead to distinct 
niches that arthropods could benefit  from48. Finally, some phorid species, such as Megaselia scalaris (another 
species whose occupancy decreased with high land values) are highly-associated with human activity, and may 
be more likely to occur in areas of high human density and thus low land value. Whatever the driver behind the 
patterns we observed for arthropods, our results suggest an extension of the luxury-effect hypothesis in that it 
may not apply to all arthropod groups in an urban setting. Uncovering the drivers behind this pattern could be 
an important avenue of future research.

Another unexpected finding was that essentially all phorid species were more likely to occur in areas further 
away from natural areas (Fig. 2). Much of the natural area in L.A. is concentrated in the surrounding moun-
tains and thus tends to be at higher elevations, and remnant natural areas are very different from city gardens 
and  parks45. However, this effect remained significantly negative even after accounting for the independent 
effect of elevation. It is possible that highly local factors are more important in shaping phorid diversity, who 
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are (presumably) less vagile than the other groups, and thus are responding on a finer spatial scale. It is also 
possible that there are some fundamental differences between natural areas at different elevations in L.A. that 
are not captured in this analysis. For example, our definition of natural areas was quite broad and included any 
protected areas larger than 10 hectares. This may include heavily-modified and disturbed urban parks that may 
not be suitable for phorid species, but act as refuges for other arthropod species to maintain relatively high 
levels of diversity in urbanized landscapes (Fig. 1). Further characterization of these differences in natural area 
types may help unravel this relationship.

We see mixed responses both within and between groups in response to impervious surface. This was 
unexpected, as much research has pointed towards a negative effect of impervious surface on arthropod 
 communities49–51. Often this is due to the reduction of floral resources, nesting habitat, and prey availability in 
these  environments31. However, the impact of these reductions are most detrimental in specialist species who 
have specific life history  requirements52, whereas generalist and highly-mobile species have the flexibility to 
exploit alternate resources and are less likely to be negatively impacted. Because we surveyed a broad variety of 
species that likely span a wide generalism-specialism spectrum, this could account for the mixed responses we 
see. Additionally, it is possible that impervious surface never reaches high enough levels to actually be a strongly 
negative effect. Recent work has hypothesized that the effects of impervious surface area don’t begin to have 
noticeably negative impacts on insect biodiversity until they reach more than 50% of the surrounding  area33. 
Mean impervious surface area within a 0.25km radius from our study sites hovers near 55%, and so perhaps is 
only a significant deterrent in specialist species, and not broadly affecting most species.

Hover flies (Syrphidae) were one of the only groups to exhibit a negative response to temperature. One 
possible explanation could be that the food plants that maintain high aphid populations (the main food source 
of some  syrphids53) dry up rapidly in the summer, particularly in areas with high mean temperature. Another 
possible explanation might be tied to their role as pollinators occupying a niche similar to native bees. Urban 
warming generally harms the abundance of native  bees33,54, and honey bees forage more in higher temperatures 
and when it is  sunny55. Considering the ubiquity of feral and managed non-native honey bees throughout our 
study area, we think it is plausible that the negative effect of temperature on hover fly densities is a consequence 
of honey bee competition. This is compatible with recent results showing a negative effect of urban honey bees 
on native  pollinators56.

There are a number of caveats with our study that may influence the generalization of our findings. First, the 
taxonomic scope of our study is determined by the limitations imposed by our sampling method. Malaise traps 
were used to collect arthropods (with the exception of spiders), which trap some groups reliably, whereas some 
groups of arthropods are underrepresented compared to other sampling  approaches57,58. We included all of the 
taxa which we had enough representation across sites and sampling months to draw reliable inferences from but 
had to drop others (such as Lepidoptera, Hymenoptera, etc.; see Supp. Fig. S1). Second, we collated land value 
data from a number of different sources and counties. Methodologies for calculating land value potentially differ 
across counties, and we see a noticeable jump in values at county lines (such as San Bernardino) that may be an 
artifact of this (Supp. Fig. S12). Third, we chose to focus solely on spatial patterns of biodiversity, and there is no 
temporal dimension to this study, neither seasonal nor yearly. For the vast majority of our sites, we only have 1 
year of data. Any large-scale climatic anomalies could influence the composition of the arthropod communities 
we sampled. Arthropod communities also tend to be very stochastic and change year-to-year59, and we may be 
missing this variation. Indeed, seasonal variation in climate has been shown to be important in this  system60, 
and future work will aim to decouple the spatial vs. temporal components of biodiversity in this system. Finally, 
Los Angeles is a unique city in some respects, particularly due to its climate (dry, hot, near-desert23), varied 
topography, and proximity to both the coast and to large protected areas. Additionally, it is distinctive in its 
combination of dense human population but sprawling urban  footprint61 and the high levels of wealth disparity 
among its residents. However, there are many cities in the US arid west that have emulated the model of urban 
sprawl that Los Angeles pioneered. Therefore, we believe our results may be representative of other urban areas 
in western North America, though it is quite possible that we may see different trends in cities that are cooler, 
wetter, and have a different urbanization footprint (e.g. London or Paris).

In summary, we found that high heterogeneity in responses within and across 6 arthropod groups to (i) 
topographical, (ii) abiotic, and (iii) anthropogenic factors that can affect occupancy across L.A. This translates 
into high regional diversity and highly variable composition across space. This high variability in composi-
tion across space can have large consequences on the ecosystem services that arthropods provide across the 
city. Our findings are of general interest with respect to urban arthropod distributions and spatial factors that 
drive heterogeneity in community composition. These findings also highlight that arthropod diversity is not 
limited to affluent neighborhoods, and that with proper land management (such as prioritizing green areas, 
reducing pesticide application, and creating microhabitats in our built  environments62), landowners can ensure 
that the ecosystem benefits derived from arthropods are distributed amongst all urban  residents63. Finally, this 
study illustrates the unique value of community science in urban ecosystems. Not only has this project engaged 
Angelenos in their own backyard biodiversity and contributed to broader educational initiatives within the 
 community64, it has yielded numerous novel scientific findings such as the description of species previously 
unknown to  science65,66, seasonal trends in  abundance10, and has documented major range extensions, potentially 
due to the introduction of non-native  species67, all of which are relevant to site- and species-based management 
strategies. As such, museum-led community science initiatives like this one have an important role to play in 
the conservation  arena68.
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Methods
Community data collection
BioSCAN survey
BioSCAN is a community science project conducted by the Natural History Museum of Los Angeles County. The 
BioSCAN team recruited project participants to become BioSCAN site hosts and agreed to host arthropod sam-
pling and environmental data collection on their properties over the course of one continuous year. All sampling 
took place in residential backyards and gardens in L.A. (Fig. 1). None of the sites were placed in natural areas.

Insects were sampled using a Malaise trap, a tent-like passive collection device that collects insects entering 
the space of the tent. Insects that are attracted to light and that move upwards when encountering obstacles will 
move up the mesh and fall into a sampling bottle at the top of the trap that contains ethanol to kill and preserve 
the specimens. Participants conducted sampling for 1 week each month for one continuous calendar year. Three 
distinct 1-year sampling campaigns were conducted, accumulating a total of 60 sites that were sampled for a 
minimum of 1 year. Each sampling campaign (phase) occurred in different years, where phase 1 occurred dur-
ing 2014, phase 2 during 2015 and 2016, and phase 3 during 2017 and 2018. Staff of the museum visited each 
location periodically to collect accumulated insect samples and the paired environmental data (see below). For 
further details, see McGlynn et al.60.

Spiders were hand collected by the museum staff via generalized hand-collecting on the property and the 
general vicinity where the traps were placed.

Arthropod identification
BioSCAN staff and cooperating expert taxonomists identified arthropod specimens using morphology. The 
following groups were primarily identified to species or morphospecies level and as such are included in the 
analyses: Mycetophilidae, Phoridae, Drosophilidae, Tipuloidea, Syrphidae, and Araneae (Supp. Fig. S1).

Environmental data and site characteristics
Arthropods are small-bodied ectotherms with specialized diets, so their occurrence and sampling of arthropods 
is a function of microhabitat characteristics. For this reason, fine-scale measurement of habitat characteristics is 
essential to create a predictive framework for arthropod  biodiversity69. We used microclimate variables collected 
directly at the site of arthropod collections. This approach resulted in insights into the assembly of arthropod 
communities that would not have been possible with remote sensing or other more coarse approaches to micro-
habitat  assessment23,60.

HOBO data loggers
Environmental data trackers were placed alongside every trap. These trackers recorded data every five minutes 
on air temperature, soil temperature, relative humidity, and insolation (solar radiation).

We cleaned the HOBO collected data following McGlynn et al.60. Specifically, we used the following steps: 
(i) We aggregated all site-level data into three dataframes, each corresponding to a phase of the BioSCAN data 
collection, removing duplicate entries and standardizing variable units across phases. For example, tempera-
ture was collected in Celsius in some phases, while in others in Fahrenheit. (ii) We filtered the variables to air 
temperature and relative humidity and excluded all other variables. (iii) We removed potential errors in the 
data. For temperature, we removed values less than − 5 ◦C and more than 50 ◦C , and for relative humidity, we 
removed values less than 0% and greater than 100%. (iv) Site 07 had a sequence of months containing tempera-
tures higher than 60 ◦C , which is an unreasonably high temperature, so we removed all of this temperature data. 
(v) We calculated the minimum and maximum temperature (Tmin and Tmax) at the hourly scale to smooth 
any unreasonable temperature values captured at the 5-min period. (vi) For any hourly or daily data, we treated 
these data as NAN (not a number) if more than 10% of 5-min data used to aggregate was itself NAN. (vii) We 
then further removed observations from all sites if more than 25% of sites had NAN for that date-time combi-
nation for the variable in question. (viii) For the remaining NAN, we used inverse-distance weighting (IDW) 
interpolation with three nearest neighbors and a power of 1, where the neighbors are other BioSCAN HOBO 
sensors. IDW was performed at an hourly scale. (ix) Our annual summary statistics were then computed using 
this normalized, semi-gap-filled data.

Using the site-level micro-meteorological data from the HOBO data loggers, we calculated several bioclimatic 
variables at an annual  scale70 to obtain environmental metrics for each site that encompassed temporal variation. 
This way, landscape and site environmental characteristics were comparable (i.e., accounting spatial variation) 
and occupancy estimates could be interpolated across L.A. From the available suite of bioclimatic variables we 
used only mean annual temperature (BIO1) and mean diurnal range (BIO2) in our occupancy models.

Meteorological data
We downloaded Bioclimatic variables from  WorldClim70 to create the interpolated map of species richness for 
L.A. (see Spatial Interpolation).

Land value
Land parcel data, including parcel delineation, land value, use type, and year assessed, was available and down-
loaded for Los Angeles and San Bernardino  counties71,72. We filtered for residential parcels only and scaled parcel 
values to the estimated current value using historic Consumer Price Index estimates. Parcel values were then 
normalized by area and unreasonably low values were filtered from the dataset.
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Using this standardized parcel dataset, we calculated neighborhood-level land value estimates for each of the 
BioSCAN sites by taking the mean land value of residential parcels within two buffer sizes around each sampling 
site: 0.25 km and 0.5 km. We chose to calculate these buffers at different scales because of the differing dispersal 
abilities between the taxonomic groups included in our study. While some groups (e.g. Syrphids) can disperse 
relatively  far73, and will likely be influenced by the habitat within a a radius of 0.5–1  km73, other groups (e.g. 
Phorids) are known to not disperse very far at  all74 (and sometimes less than 30  m75), and so habitat beyond 0.25 
km is likely not relevant for these groups. Land value buffers were set at 0.25 km for Phoridae, Araneae; and 0.5 
km for Syrphidae, Tipuloidea, Drosophilidae, and Mycetophilidae.

Impervious surface
We calculated neighborhood-level impervious surface percentage estimates in a similar way to land value. We 
downloaded 2019 National Land Cover Database (NLCD) Impervious Surface cover  data76 at the 30 m resolution 
for L.A. and the mean impervious cover percentage value was calculated within two buffer sizes around each sam-
pling site: 0.25 km, and 0.5 km. The same buffer sizes as from land value were assigned to each taxonomic group.

Elevation
We downloaded and extracted elevation data at the 30 m resolution using the void-filled NASADEM  product77.

Distance to ocean
Sites in our study vary in their proximity to the Pacific Ocean and topological features. Proximity to the ocean 
mediates many of the meteorological effects that differentiate coastal and inland areas, such as solar radiation, 
weather systems, and the distribution of moisture. Additionally, meteorological conditions do not change linearly 
with geographic distance; they are mediated by topological features, such as mountains (e.g. rain shadows). As 
such, we developed a cost distance to ocean map for L.A. We created a cost distance raster using the cost distance 
tool in  ArcGIS78 where a polygon of the Pacific Ocean was the source layer and slope was the cost (derived from 
the NASADEM elevation data). Here, slope acts as a surrogate for topological features that disrupt meteorologi-
cal conditions, namely mountains.

Distance to natural areas
Some parks and protected areas contain native habitat and complex vegetation structures not commonly found 
across urbanized L.A., potentially resulting in different community structures in neighboring areas. Additionally, 
natural areas are thought to be important reservoirs of source populations for  insects79, and so sites closer to 
natural areas may experience more frequent colonization events. We used the sf  package80 in  R81 to calculate a 
raster with cell values corresponding to the distance to nearest protected area. We used the California Protected 
Area  Database82 as a surrogate for natural areas, removing protected areas less than 10 hectares in size to remove 
small, manicured parks that may not provide the habitat characteristics that larger, more natural areas do.

Causal analysis
To estimate the effect sizes of different variables of interest (mean annual air temperature, mean diurnal range, 
land value, percentage impervious cover, distance to natural areas, and distance to ocean) on occupancy, we use 
a structural causal modeling  framework83. For each group studied, we developed a directed acyclic graph (DAG) 
based on shared life history characteristics of the group and probable influential variables related to our research 
question (Supp. Figs. S3–S5). Visualizations of each DAG were produced using the R packages daggity84 and 
ggplot285. The relationships we established in the DAGs were dependent on the climatic and social relation-
ships we find in the greater L.A. metro area. For example, in L.A., we observe that higher elevation areas or areas 
closer to the ocean have higher living desirability.

After developing a DAG for each taxonomic group studied, we followed the structural causal modelling 
framework described by Arif and MacNeil  202283 to validate our DAGs with observed variable data and apply 
backdoor criterion in order to select the appropriate controlling variables for each regression model. The R 
package daggity84 was used once more to test DAG and data consistency among observed variables that 
could not be explained by the relationships specified. After correcting the DAGs for unexplained correlations, 
we applied the backdoor criterion to select a single model for each variable of interest to estimate the variable’s 
effect on occupancy.

Occupancy models
We used an occupancy modeling approach to evaluate the effect of the different predictors for each arthro-
pod group. We ran a multi-species occupancy model for each group (Mycetophilidae, Phoridae, Drosophili-
dae, Tipuloidea, Syrphidae, Araneae). Following Stewart et al.25, we predicted occupancy probability using an 
information-theoretic approach using all observed variables but used a structural causal modeling framework 
approach to estimate and compare the effects of each observed variable on arthropod occupancy using separate 
models informed by our DAGs. Because of this, we ran a total of 37 occupancy models (6 arthropod groups × 6 
environmental predictors of interest, plus an additional environmental predictor for Phoridae only). Observed 
variables include site averaged annual mean temperature, site averaged mean diurnal range, site averaged relative 
humidity, site elevation, site distance to ocean, site distance to natural areas, neighbourhood level impervious 
surface, and neighbourhood level land value. We ran the following models.

Model all: is the occupancy model that we developed to predict arthropod occupancy across L.A.
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We estimated occupancy for each species i in each site j, where ψ0 and, ψSpecies[i] are defined as a global inter-
cept and a species-specific intercept, respectively. ψTMean [i] , ψTDiurnalRange [i] , ψElevation[i] , ψDOcean [i] , ψDNaturalAreas

[i] , 
ψImperviousSurface[i] , and ψLandValue[i] are species-specific linear effects of mean annual temperature, mean annual 
diurnal range, elevation, site distance to the ocean, site distance to natural areas, neighborhood impervious 
surface, and neighborhood land value, respectively.

Model distance to ocean is the occupancy model that we used to estimate the effect of distance to the ocean 
on occupancy.

Model distance to natural areas is the occupancy model that we used to estimate the effect of distance to 
natural areas on occupancy.

Model mean annual temperature is the occupancy model that we used to estimate the effect of mean annual 
temperature on occupancy.

Model Diurnal range is the occupancy model that we use to estimate the effect of the Diurnal range on 
occupancy.

Model relative humidity is the occupancy model that we use to estimate the effect of the Relative humidity on 
occupancy. This model was run on Phoridae only.

Model impervious surface and land value is the occupancy model that we used to estimate the effect of imper-
vious surface and land value on occupancy.

(1)

logit(ψij) =ψ0+

ψSpecies[i]+

ψTMean [i] × TMean[j]+

ψTDiurnalRange [i] × TDiurnalRange[j]+

ψElevation[i] × Elevation[j]+

ψDOcean [i] × DOcean[j]+

ψDNaturalAreas
[i] × DNaturalAreas[j]+

ψImperviousSurface[i] × ImperviousSurface[j]+

ψLandValue[i] × LandValue[j].

(2)

logit(ψij) =ψ0+

ψSpecies[i]+

ψDOcean [i] × DOcean[j] + .

(3)

logit(ψij) =ψ0+

ψSpecies[i]+

ψDNaturalAreas
[i] × DNaturalAreas[j]+

ψElevation[i] × Elevation[j].

(4)

logit(ψij) =ψ0+

ψSpecies[i]+

ψTMean [i] × TMean[j] + .

(5)

logit(ψij) =ψ0+

ψSpecies[i]+

ψTDiurnalRange [i] × TDiurnalRange[j]+

ψDOcean [i] × DOcean[j].

(6)

logit(ψij) =ψ0+

ψSpecies[i]+

ψTMean [i] × TMean[j]+

ψRHMean [i] × RHMean[j]+

ψImperviousSurface[i] × ImperviousSurface[j]+

ψDOcean [i] × DOcean[j]+

ψElevation[i] × Elevation[j].
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For all models, we assume that species-specific intercepts and slopes in both of the above models are normally 
distributed about some mean. Specifically,

where µψTMean , µψTDiurnalRange , µψElevation , µψDOcean , µψDNaturalAreas
 , µψImperviousSurface , µψLandValue denote the mean 

effect of each corresponding predictor, across species, and σ terms denote the variances about these means.
In both of the above models, we model detection probability as

where p0 denotes the mean detection probability and pSpecies[i] denotes a species-specific random effect. While 
pMonth2 are fixed effects that change as a function of the month. The fixed effect of month assumes detection is 
highest during the middle of the year and decreases towards the beginning and end of the year.

Additionally, we assume

We ran occupancy models in  JAGS86 and assessed model convergence both by visually inspecting chains and 
checking The Gelman–Rubin statistic (we ensured that R̂ was < 1.1 for all parameters). We used flat, uninforma-
tive priors for all parameters and ran models for 100,000 iterations, with a burn-in of 1000 iterations and thinning 
every 100 iterations, across 3 chains, resulting in a total of 300 posterior samples.

Spatial interpolation of results
We estimated species richness for our study groups across L.A. by spatially interpolating our linear occupancy 
model, fit with species-specific mean posterior effect sizes for each predictor and intercept. Input spatial data was 
consistent with the data used for occupancy models with the exception of the two bioclimatic variables: mean 
annual air temperature (BIO1) and mean diurnal range (BIO2). The HOBO temperature data is extremely fine-
scale in its temporal and spatial resolution and so will be the most accurate data in predicting species-specific 
occupancy at each site. However, the HOBO temperature data is very limited in spatial extent (we only had 
data loggers at the 60 sites) so interpolating site-level temperature values across the remainder of the LA Basin 
would be unfeasible. For this reason, we used  WorldClim70 data to interpolate site-level climate across the basin.

Data processing to produce these maps included the following. (i) We aligned and projected all spatial predic-
tors to the WGS 84 projection system, masked and snapped to a common configuration, and assigned the same 
cell size. (ii) We scaled and log-transformed input data, as was done to prepare the data for the occupancy model. 
We also re-centered mean annual air temperature and mean diurnal range estimates due to varying sampling-
site mean estimates (as a result of the different data sources). Here, we assume that the BioCLIM variables scale 
linearly with site-level difference observations. (iii) We filtered values of each predictor if it was beyond three 
standard deviations about the mean of our model inputs (zero after scaling); values beyond this were set to Not-
a-number (NAN). (iv) For each 1-km grid cell across L.A., if any predictor had a value of NAN, we set to NAN 
to normalize the extent, thus generating the extent seen in Fig. 1.

After processing the spatial data, we calculated species-specific occupancy posterior probabilities for each 
1-km cell using the Model All. We then summed the median posterior occupancy for each species at each cell 
for all species, first according to group, then collectively for all groups, to obtain richness estimates (Fig. 1).

(7)

logit(ψij) =ψ0+

ψSpecies[i]+

ψSpecies[i]+

ψElevation[i] × Elevation[j]+

ψDOcean [i] × DOcean[j]+

ψDNaturalAreas
[i] × DNaturalAreas[j]+

ψImperviousSurface[i] × ImperviousSurface[j]+

ψLandValue[i] × LandValue[j].

(8)

ψSpecies[i] ∼ N (0, σψSpecies)

ψTMean [i] ∼ N (µψTMean , σψTMean )

ψTDiurnalRange [i] ∼ N (µψTDiurnalRange , σψTDiurnalRange )

ψRHMean [i] ∼ N (µψRHMean , σψRHMean )

ψElevation[i] ∼ N (µψElevation, σψElevation)

ψDOcean [i] ∼ N (µψDOcean , σψDOcean )

ψDNaturalAreas
[i] ∼ N (µψDNaturalAreas

, σψDNaturalAreas
)

ψImperviousSurface[i] ∼ N (µψImperviousSurface, σψImperviousSurface)

ψLandValue[i] ∼ N (µψLandValue, σψLandValue),

(9)

logit(pijk) =p0+

pMonth2 ×Month2[i]+

pSpecies[i],

(10)pSpecies[i] ∼ N (0, σpSpecies).
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For most analyses we used R V4.2.181. For spatial manipulations we used the packages sf80 and ras-
ter87; for data manipulation and visualization we used tidyverse88; for running models, we used rjags89, 
R2jags90, and runjags91. For manipulation of the environmental data we used Python V3.8.992, and for 
some spatial analyses we used ArcGIS Pro V3.078. To access and download the spatial data used, we used Google 
Earth  Engine93. To generate maps for Fig. 1, Figs. S2, S12–S17, we used the packages ggplot285 and ggmap94 
for visualization, and  basemaps95 for downloading the basemap, which used the toner-lite map tiles by Stamen 
Design, under CC BY 4.0. Data by OpenStreetMap, under ODbL.

Code availability
All code used to produce these results is freely available in a public GitHub repository (https:// github. com/ EcolD 
ataSc iUSC/ BioSC AN_ 2023. git). The repository includes most external data—as well as the steps to access and 
download it—and BioSCAN collection data can be obtained by contacting the corresponding author.
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